# Explicit Explore-Exploit Algorithms in Continuous State Spaces

### Mikael Henaff

Microsoft Research NYC

#### Introduction

- Many RL algorithms have high sample complexity
- Explicit Explore-Exploit  $(E^3)$ : first provably sample-efficient RL algorithm
- Sample complexity:  $poly(|\mathcal{S}|, |\mathcal{A}|, H)$



- ullet Assumes small discrete  ${\cal S}$
- Goal: handle large/infinite S

## Setup

Model class  $\mathcal{M}$ ,  $M: \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$ Policy class  $\Pi$ , horizon H



 $v_{\text{explore}}(\pi, \mathcal{M}) = \max_{M, M' \in \mathcal{M}} \sum_{h=1}^{H} \mathcal{D}(\pi, M, M', h)$  $v_{\text{exploit}}(\pi, M) = \sum_{h=1}^{H} \sum_{s_h} P_M^{\pi,h}(s_h) R^{\star}(s_h)$ 

## Algorithm



## Theorem

Assume that  $M^\star\in\mathcal{M}$ . With probability at least  $1-\delta$ , DREEM outputs an  $\epsilon$ -optimal exploitation policy after collecting at most  $ilde{O}\Big(rac{H^5d^2|\mathcal{A}|^4}{\epsilon^2}\log\Big(rac{T|\mathcal{M}||\Pi|}{\delta}\Big)$ samples, where d is the max rank of the misfit matrices.

Use ranks of **model misfit matrices** as complexity measure:  $d = \max_h \operatorname{rank}(A_h)$ 



- ullet Bounded by  $|\mathcal{S}|$
- Bounded by rank of transition matrix
- ullet Bounded by # parameters in factored MDPs

Proof sketch (simplified, errors are 0/1):

- ullet High disagreement between  $M,M' \implies$  at least one must have high error
- ullet At iteration t, there is a model in  $\mathcal{M}_t$  with high error or all models give a good exploitation policy
- Row  $\pi_t$  of  $A_h$  is linearly independent of rows of previous  $\pi_t \implies$  at most  $\operatorname{rank}(A_h) \leq d$  iterations



### Experiments

- Small ensemble of NN models to approximate version space (4-8 models)
- MCTS/BFS for planning during exploration
- DQN on replay buffer for exploitation







(e) Stochastic Combination Lock (antishaped rewards)





(g) Classic Control

#### Related Work

E<sup>3</sup>: Kearns and Singh, 2002

Error matrices: Jiang et al, 2017; Sun et al, 2019 Practical algorithm: Shyam et al, Pathak et al 2019

#### Links

- Paper: https:/arxiv.org/abs/1911.00617
- Code: https://github.com/mbhenaff/neural-e3
- Contact: mihenaff@microsoft.com