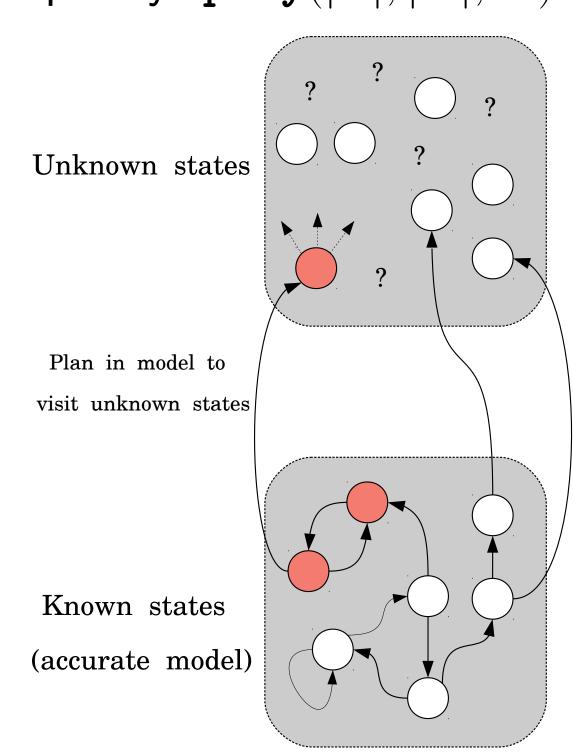
Explicit Explore-Exploit Algorithms in Continuous State Spaces

Mikael Henaff

Microsoft Research NYC

Introduction

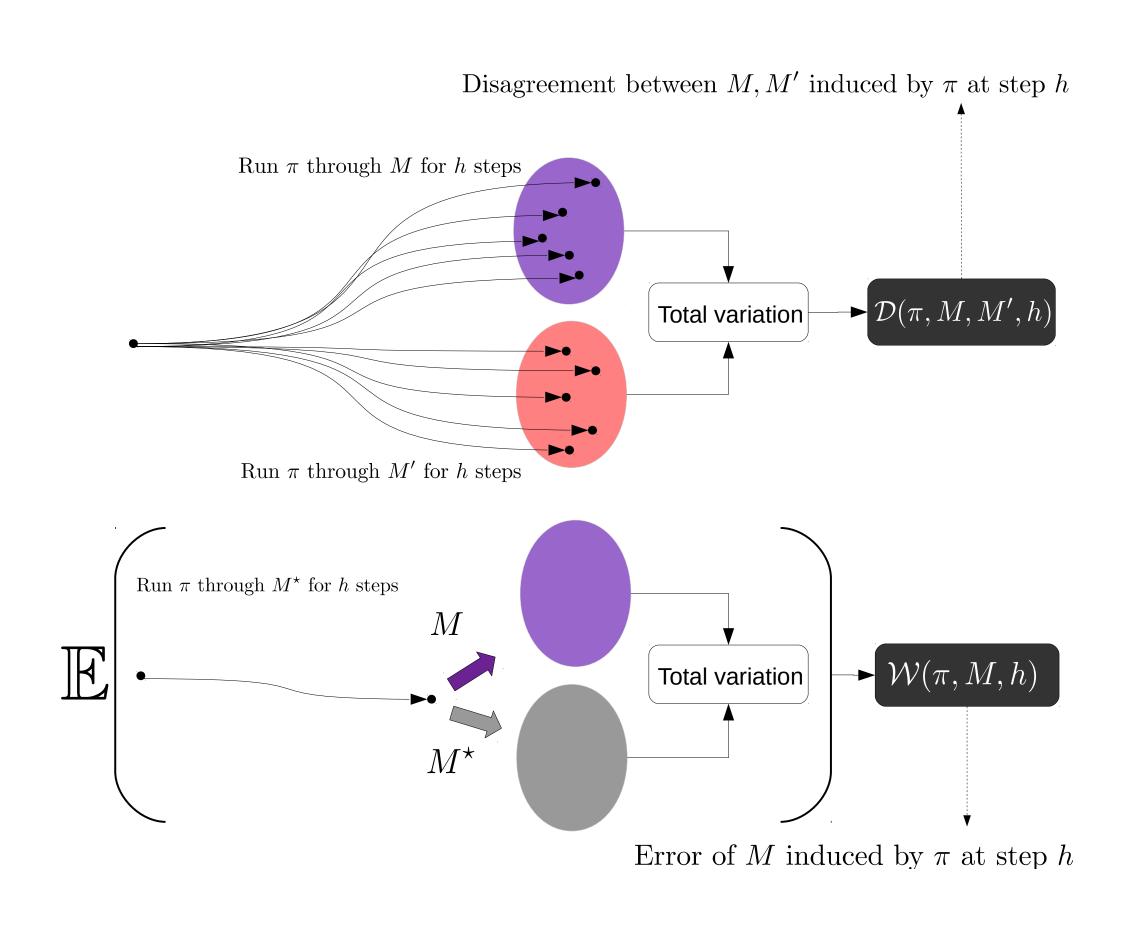
- Many RL algorithms have high sample complexity
- Explicit Explore-Exploit (E^3) : first provably sample-efficient RL algorithm
- Sample complexity: $poly(|\mathcal{S}|, |\mathcal{A}|, H)$



- ullet Assumes small discrete ${\cal S}$
- Goal: handle large/infinite S

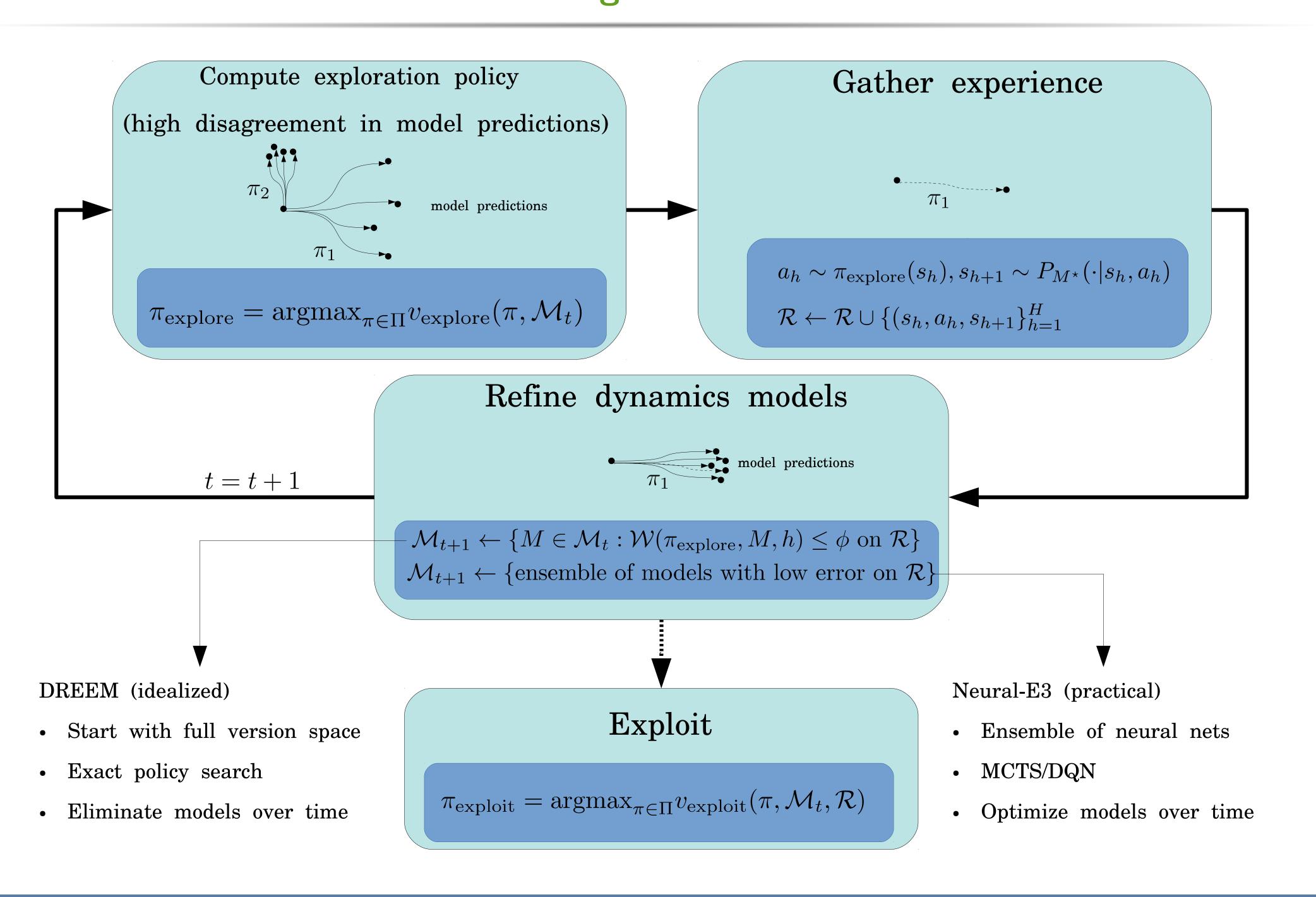
Setup

Model class \mathcal{M} , $M: \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$ Policy class Π , horizon H



 $v_{\text{explore}}(\pi, \mathcal{M}) = \max_{M, M' \in \mathcal{M}} \sum_{h=1}^{H} \mathcal{D}(\pi, M, M', h)$ $v_{\text{exploit}}(\pi, M) = \sum_{h=1}^{H} \sum_{s_h} P_M^{\pi,h}(s_h) R^{\star}(s_h)$

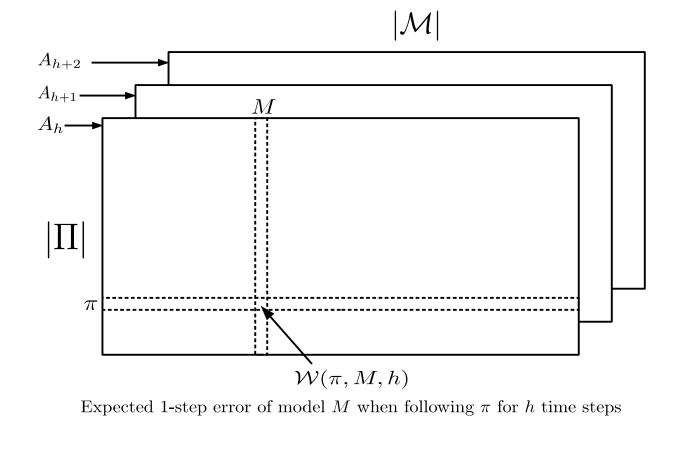
Algorithm



Theorem

Assume that $M^\star\in\mathcal{M}$. With probability at least $1-\delta$, DREEM outputs an ϵ -optimal exploitation policy after collecting at most $ilde{O}\Big(rac{H^5d^2|\mathcal{A}|^4}{\epsilon^2}\log\Big(rac{T|\mathcal{M}||\Pi|}{\delta}\Big)$ samples, where d is the max rank of the misfit matrices.

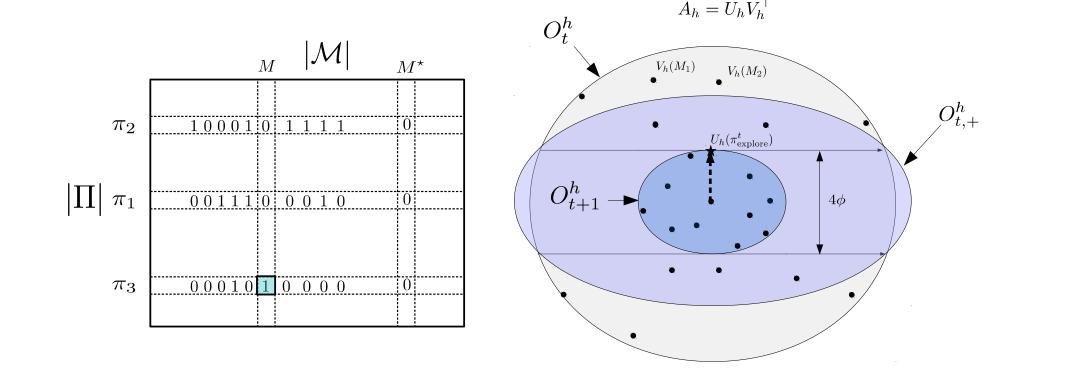
Use ranks of **model misfit matrices** as complexity measure: $d = \max_h \operatorname{rank}(A_h)$



- ullet Bounded by $|\mathcal{S}|$
- Bounded by rank of transition matrix
- ullet Bounded by # parameters in factored MDPs

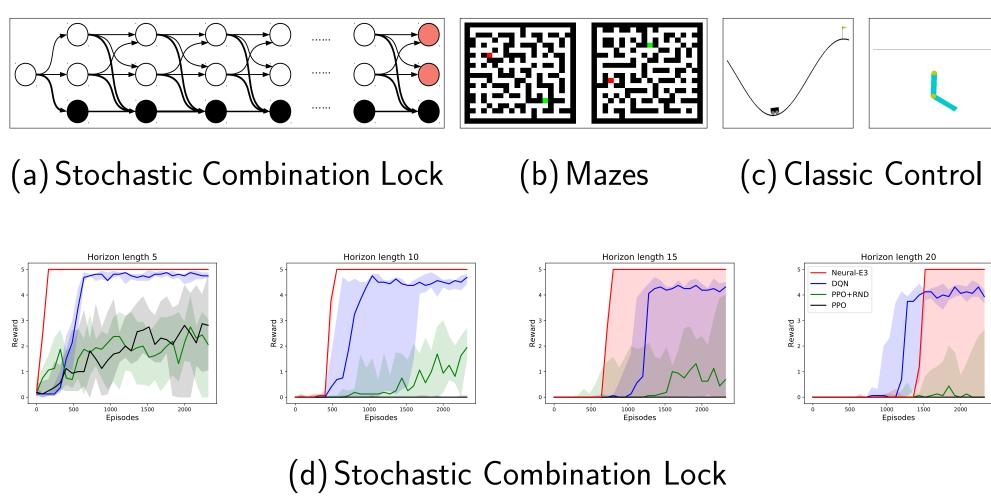
Proof sketch (simplified, errors are 0/1):

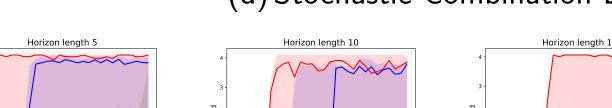
- ullet High disagreement between $M,M' \implies$ at least one must have high error
- ullet At iteration t, there is a model in \mathcal{M}_t with high error or all models give a good exploitation policy
- Row π_t of A_h is linearly independent of rows of previous $\pi_t \implies$ at most $\operatorname{rank}(A_h) \leq d$ iterations

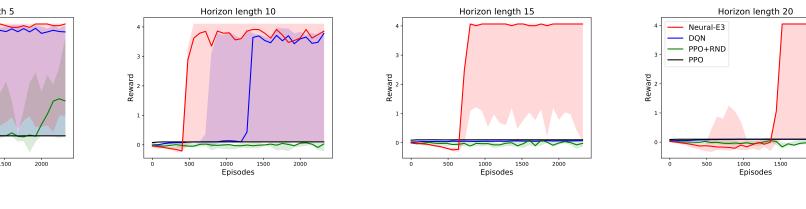


Experiments

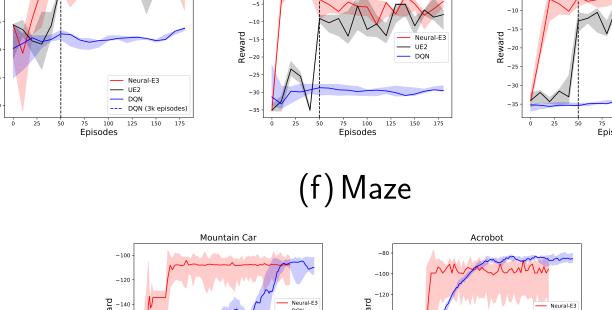
- Small ensemble of NN models to approximate version space (4-8 models)
- MCTS/BFS for planning during exploration
- DQN on replay buffer for exploitation

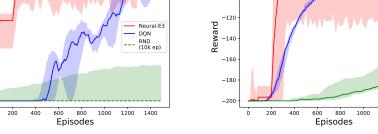






(e) Stochastic Combination Lock (antishaped rewards)





(g) Classic Control

Related Work

E³: Kearns and Singh, 2002

Error matrices: Jiang et al, 2017; Sun et al, 2019 Practical algorithm: Shyam et al, Pathak et al 2019

Links

- Paper: https:/arxiv.org/abs/1911.00617
- Code: https://github.com/mbhenaff/neural-e3
- Contact: mihenaff@microsoft.com