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Introduction

•Many RL algorithms have high sample complexity
•Explicit Explore-Exploit (E3): first provably
sample-efficient RL algorithm
•Sample complexity: poly(|S|, |A|, H)
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•Assumes small discrete S
•Goal: handle large/infinite S

Setup

Model classM, M : S ×A → ∆(S)
Policy class Π, horizon H
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Algorithm

Compute exploration policy 
(high disagreement in model predictions)

Gather experience

Refine dynamics models

Exploit
DREEM (idealized)
● Start with full version space
● Exact policy search
● Eliminate models over time

Neural-E3 (practical)
● Ensemble of neural nets
● MCTS/DQN
● Optimize models over time

model predictions

model predictions

Theorem
Assume that M ? ∈ M. With probability at least 1 − δ, DREEM outputs an ε-optimal exploitation policy
after collecting at most Õ

(
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))
samples, where d is the max rank of the misfit matrices.

Use ranks of model misfit matrices as
complexity measure: d = maxh rank(Ah)

•Bounded by |S|
•Bounded by rank of transition matrix
•Bounded by # parameters in factored MDPs

Proof sketch (simplified, errors are 0/1):
•High disagreement between M,M ′ =⇒ at least
one must have high error
•At iteration t, there is a model inMt with high
error or all models give a good exploitation policy
•Row πt of Ah is linearly independent of rows of
previous πt =⇒ at most rank(Ah) ≤ d iterations

Experiments

•Small ensemble of NN models to approximate
version space (4-8 models)
•MCTS/BFS for planning during exploration
•DQN on replay buffer for exploitation
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(a)Stochastic Combination Lock (b)Mazes (c)Classic Control
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(d) Stochastic Combination Lock
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(e) Stochastic Combination Lock (antishaped rewards)
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(f)Maze
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(g)Classic Control

Related Work

E3: Kearns and Singh, 2002
Error matrices: Jiang et al, 2017; Sun et al, 2019
Practical algorithm: Shyam et al, Pathak et al 2019

Links
•Paper: https:/arxiv.org/abs/1911.00617

•Code: https://github.com/mbhenaff/neural-e3

•Contact: mihenaff@microsoft.com
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